Direct Optical Resolution of Vicinal Diols and an $\alpha\textsc{-Hydroxy}$ Oxime with a Vicinal Diamine

Masatoshi KAWASHIMA* and Akihisa HIRAYAMA Kankyo Kagaku Center Co., Ltd., Kamariyacho, Kanazawa-ku, Yokohama 236

Vicinal diols, such as 1,2-cyclohexanediol, 1,2-cyclooctanediol, 2,3-butanediol, and 1,2-diphenyl-1,2-ethanediol, were directly resolved with $(1\underline{R},2\underline{R})$ -(-)-1,2-cyclohexanediamine ($\underline{1}$). (\underline{E})-1,2-Diphenyl-2-(hydroxyimino)ethanol was also resolved efficiently with 1.

Although asymmetric syntheses of vicinal diols have been reported, $^{1)}$ direct optical resolution of vicinal diols has never been reported to our knowledge. In general, optical resolutions of vicinal diols have been carried out by multi-step procedures <u>via</u> the acylated derivatives. $^{2)}$

Previously we reported³⁾ the direct optical resolution of 2,2'-dihy-droxy-1,1'-binaphthyl with optically active 1,2-cyclohexanediamine ($\underline{1}$), where the efficient resolution seemed to be due to the situation that the binaphthyl and $\underline{1}$ have the same structural symmetry of C_2 and further a pair of hydrogen-bonds are probably formed between them to favor the resolution. So we planned the resolution of compounds with vicinal alcoholic, instead of phenolic, dihydroxy groups.

When the mixture of $(1\underline{R},2\underline{R})$ -(-)- $\underline{1}$ ([α]_D²⁴ -36.7° (c 4.14, H₂0)) 2.00 g (17.5 mmol) and racemic $\underline{\text{trans}}$ -1,2-cyclohexanediol ($\underline{2a}$) 1.97 g (17.0 mmol) in benzene (4 cm³) was heated to give a homogeneous solution and allowed to cool to room temperature, crystalline precipitates were obtained. They were recrystallized twice from benzene (each 4 cm³). The 1 H-NMR and IR spectra of the crystalline compound showed that the compound consisted of ($1\underline{R},2\underline{R}$)-(-)-1 and 1 and 1

The results of optical resolution of other vicinal diols, such as 1,2-cyclooctanediol $(\underline{2b})$, 2,3-butanediol $(\underline{2c})$, and 1,2-diphenyl-1,2-ethanediol $(\underline{2d})$, with $(1\underline{R},2\underline{R})$ -(-)- $\underline{1}$ are summarized in Table 1.

	Table	1.	Optical	Resolution	o f	Vicinal	Diols	with	(1R, 2R) - (-) - 1a	
--	-------	----	---------	------------	-----	---------	-------	------	---------------------	--

Diol	Resolved enantiomer	Chemical ^{b)} yield/%	[\alpha] _D ²⁰ /°	Optical ^{c)} purity/%
<u>2 b</u>	$(1\underline{R}, 2\underline{R})$	36	-14.8 (c 1.33, EtOH)	88
<u>2 c</u>	$(2\underline{R},3\underline{R})$	16	-9.16 (с 1.09, СН ₃ СОСН ₃)	74
<u>2 d</u>	(1 <u>S</u> ,2 <u>S</u>)	62	-90.4 (c 2.50, EtOH)	91

a) All optical resolutions were carried out in the same manner as described in the text except for the isolation of optically active $\underline{2d}$: The crystalline compound, which consisted of $(1\underline{R},2\underline{R})$ -(-)- $\underline{1}$ and $(1\underline{S},2\underline{S})$ -(-)- $\underline{2d}$, was treated with dilute hydrochloric acid, and $(1\underline{S},2\underline{S})$ -(-)- $\underline{2d}$ was extracted with $\mathrm{CH}_2\mathrm{Cl}_2$. b) Chemical yields were based on the enantiomer in the racemate. c) Optical purities were calculated from the optical rotations based on the reported values of $[\alpha]_D$ in the literature. (6)

Moreover, optical resolution of an α -hydroxy oxime, which also has two hydroxy groups, with optically active diamine is of interest. Though α -hydroxy oximes are useful compounds in organic syntheses, 7) their optical resolution has not yet been reported.

Optical resolution of α -hydroxy oxime $(\underline{3})$ was performed in the same manner as in the cases of diols described above. When the mixture of $(1\underline{R},2\underline{R})$ -(-)- $\underline{1}$ 2.00 g (17.5 mmol) and racemic (\underline{E}) -1,2-diphenyl-2-(hydroxy-imino)ethanol $(\underline{3})$ 4.00 g (17.6 mmol) in benzene (10 cm³) was heated to homogeneous solution and allowed to cool to room temperature, crystalline precipitates were obtained, which were twice recrystallized from benzene (each 50 cm³). The 1 H-NMR and IR spectra of the purified crystalline compound showed that the compound was composed of $(1\underline{R},2\underline{R})$ -(-)- $\underline{1}$ and $\underline{3}$ (1:1). 8) Then the crystalline compound was treated with 1 mol dm⁻³ hydrochloric acid and ethanol to afford (\underline{R}) -(-)- (\underline{E}) - $\underline{3}$ $([\alpha]_{\underline{D}}^{23}$ -5.12°(c 0.508, CHCl $_3$)) 1.11 g (4.90 mmol) in a yield of 56% based on the enantiomer in the racemate. Optical rotation of the resolved $\underline{3}$ was larger than the reported value. 9)

As described above, C_2 -symmetrical vicinal diols ($\underline{2}$) and α -hydroxy oxime ($\underline{3}$) were directly and conveniently resolved with C_2 -symmetrical vicinal diamine ($\underline{1}$). The novel optical resolutions offer important methods for the acquisitions of optically active vicinal diols and α -hydroxy oximes.

References

For example, E. J. Corey, P. D. Jardine, S. Virgil, P. -W. Yuen, and R. D. Connell, J. Am. Chem. Soc., <u>111</u>, 9243 (1989); E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroder, and K. B. Sharpless, ibid., <u>110</u>, 1968 (1988); M. Tokles and J. K. Snyder, Tetrahedron Lett., <u>27</u>, 3951 (1986);

- M. Imuta and H. Ziffer, J. Org. Chem., <u>43</u>, 3319 (1978); T. Oishi and M. Hirama, ibid., 54, 5834 (1989).
- H. Brunner, U. Obermann, and P. Wimmer, Organometallics, <u>8</u>, 821 (1989);
 K. Laumen, D. Breitgoff, R. Seemayer, and M. P. Schneider, J. Chem. Soc.,
 Chem. Commun., <u>1989</u>, 148; J. P. Praly and G. Descotes, Tetrahedron Lett.,
 <u>23</u>, 849 (1982); M. V. Ganey, R. E. Padykula, G. A. Berchtold, and A. G.
 Braun, J. Org. Chem., <u>54</u>, 2787 (1989); T. B. Grindley and R. Thangarasa,
 J. Am. Chem. Soc., <u>112</u>, 1364 (1990); A. W. Ingersoll, Org. React., <u>2</u>, 376 (1944); N. A. B. Wilson and J. Read, J. Chem. Soc., <u>1935</u>, 1269.
- 3) M. Kawashima and A. Hirayama, Chem. Lett., 1990, 2299.
- 4) $(1\underline{R}, 2\underline{R}) (-) \underline{1} \cdot \underline{2a}$ (1:1): mp 61-64 °C; ¹H-NMR(CDCl₃) & 0.7-2.7 (m, 18H), 2.5 (brs, 6H), 3.1-3.6 (m, 2H); IR(KBr) 3450, 3400, 3350, 3600-2400, 1070 cm⁻¹; $[\alpha]_D^{20}$ -28.0° (c 0.1, EtOH).
- 5) $(1\underline{R},2\underline{R})$ -(-)- $\underline{2a}$, $[\alpha]_D$ -46.5° (c 0.02, H_2 0), D. M. Jerina, H. Ziffer, and J. W. Daly, J. Am. Chem. Soc., $\underline{92}$, 1056 (1970).
- 6) $(1\underline{S},2\underline{S})$ -(+)- $2\underline{b}$, $[\alpha]_{\overline{D}}^{22}$ +16.9° (c 1.33, EtOH), E. J. Corey and J. I. Shulman, Tetrahedron Lett., $\underline{1968}$, 3655; $(2\underline{S},3\underline{S})$ -(+)- $\underline{2c}$, $[\alpha]_{\overline{D}}^{31}$ +12.3° (c 3.5, CH₃COCH₃), K. A. Thaker and N. S. Dave, J. Sci. Ind. Res., Sec. B, $\underline{20}$, 329 (1961); $(1\underline{S},2\underline{S})$ -(-)- $\underline{2d}$, $[\alpha]_{\overline{D}}^{22}$ -99.1° (c 1.1, EtOH), J. Brugidou, H. Christol and R. Sales, Bull. Soc. Chim. Fr., 1974, 2033.
- 7) R. Bartnik, Y. Diab, and A. Laurent, Tetrahedron, <u>33</u>, 1279 (1977); F. A. Davis, M. S. Haque, and R. M. Przeslawski, J. Org. Chem., <u>54</u>, 2021 (1989); T. Kudo, S. Kaizaki, J. Hidaka, and Y. Shimura, Bull. Chem. Soc. Jpn., <u>48</u>, 2969 (1975).
- 8) $(1\underline{R}, 2\underline{R}) (-) \underline{1} \cdot \underline{3}$ (1:1): mp 85-100°C; ${}^{1}\text{H-NMR}(\text{CDCl}_{3} \text{CD}_{3}\text{SOCD}_{3})$ & 0.7-2.7 (m, 10H), 2.7-4.6 (brs, 6H), 5.6 (s, 1H), 7.2 (s, 10H); IR(KBr) 3500, 3450, 3360, 3330, 3300, 3250, 3600-2400, 960, 710 cm⁻¹; $[\alpha]_{D}^{20}$ -13.7° (c 1.03, CHCl₃).
- 9) (\underline{R}) -(-)-(\underline{E})- $\underline{3}$, [α]_D -3.2° (c 0.5, CHCl₃), K. Harada and S. Shiono, Bull. Chem. Soc. Jpn., 57, 1040 (1984).

(Received February 2, 1991)